
F I L T E R I N G F L O W S

The good news is, you now have actual data
about your network. The bad news is, you

have far too much data about your network.
An Internet T1 might generate millions of flow

records in a single day, while a busy Ethernet core
might generate billions or more. How can you possibly
manage or evaluate that heap of data? You must filter your data to display only
interesting flows. The flow-nfilter program lets you include or exclude flows
as needed.

You can filter traffic in almost any way you can imagine. For example, if a
particular server is behaving oddly, you can filter on its IP address. If you’re
interested in HTTP traffic, you can filter on TCP port 80. You can reduce
your data to include only interesting traffic, which will help you evaluate and
diagnose issues. For example, if you have a large internal corporate network,
you might want to view only the traffic exchanged with a particular branch
office, filtering on all of its network addresses.

Network Flow Analysis
(C) 2010 by Michael W. Lucas

58 Chapter 4

In Chapter 3, you viewed flow information by running flow-cat and feed-
ing the resulting data stream to flow-print. Filtering takes place between
these two processes: flow-nfilter accepts the data stream from flow-cat and
examines each flow. Flows that match the filter pass on to flow-print (or
other flow-processing programs); flows that do not match the filter drop
from the data stream.

Filter Fundamentals

In this chapter, you’ll start by building a few simple filters. Once you under-
stand the basics of filter construction, you’ll examine the various filter types
and functions in depth.

NOTE Define your filters in the file filter.cfg, which is probably in /usr/local/flow-tools/
etc/cfg/filter.cfg or /usr/local/etc/flow-tools/filter.cfg, depending on your
operating system and how you installed flow-tools.

Common Primitives
You’ll build your filters out of primitives. A primitive is a simple traffic charac-
teristic, such as “port 80,” “TCP,” or “IP address 192.0.2.1.” For example,
those three primitives could be combined to create one filter that passes all
TCP traffic to the host 192.0.2.1 on port 80.

flow-nfilter supports more than a dozen different primitives and can
compare them with flows in more than two dozen different ways. A primitive
looks much like this:

filter-primitive name
type primitive-type
permit value

The first line defines a filtering primitive and assigns the primitive a name.
The type at defines the characteristic you want to match on, such as

an IP address, a port, or a time. (I’ll cover the most commonly useful filter
types.)

The permit statement at defines the values you’re looking for. By
default, a primitive denies everything, so you must explicitly state what your
filter permits. Alternatively, you could use a deny statement to create a primi-
tive that matches everything except what you’re looking for and explicitly put
a default permit statement at the end.

For example, a complete primitive that matches the IP address
192.168.1.1 looks like this:

filter-primitive 192.0.2.1
type ip-address
permit 192.0.2.1

Network Flow Analysis
(C) 2010 by Michael W. Lucas

Fi l te r ing F lows 59

At I’ve named my primitive after the address it matches. You can use any
one-word name that makes sense to you, such as “mailserver” or “firewall,” if
you prefer. The ip-address primitive at matches network addresses. Finally,
at this primitive matches any IP address equal to 192.0.2.1. If you include
this primitive in a filter, it will pass traffic to or from this IP address only.

Similarly, the following primitive defines port 25:

filter-primitive port25

type ip-port

permit 25

Although I could have called this primitive 25, at I used the name
port25 to make it absolutely clear that this primitive matches a port because
the number 25 by itself could be a number of seconds, a count of octets or
packets per second, an autonomous system, a floor number, and so on. (An
IP address is unmistakable, so using the address as a name probably won’t
confuse you.)

The ip-port primitive at is another commonly used filter component.
Including this primitive in a filter means that the filter will pass traffic only
on port 25.

The default filter.cfg includes a primitive for TCP traffic, as shown here:

filter-primitive TCP

type ip-protocol

permit tcp

You’re unlikely to mistake the name TCP at for anything other than
the protocol, but the ip-protocol primitive at lets you create a primitive
for any TCP/IP protocol. Of course, if you have obscure network protocols,
you’ll probably need to create additional protocol primitives, and your per-
mit statements at can use either the protocol number or the protocol
name from /etc/protocols.

Each primitive can include only one type of match. For example, the fol-
lowing is invalid:

filter-primitive bogus-primitive

type ip-port

permit 25

type ip-address

permit 192.0.2.1

This primitive tries to match on both a port number () and an IP
address (). A primitive cannot do this. To filter out connections to the
IP address 192.0.2.1 on port 25, you must assemble a filter from multiple
primitives.

Now that you have a few primitives, you can create your first filter.

Network Flow Analysis
(C) 2010 by Michael W. Lucas

60 Chapter 4

Creating a Simple Filter with Conditions and Primitives
Combine primitives into filters with the filter-definition keyword, like so:

filter-definition name
match condition primitive1
match condition primitive1
...

Every filter begins with filter-definition () and a name. Filters can
share a name with a primitive but not with other filter definitions.

The filter contains a series of match keywords (), followed by conditions
and primitives. The match keyword specifies the part of the flow this entry
checks and the primitive to compare it to.

Conditions include things such as IP addresses, ports, protocols, types of
service, and so on. All of the conditions listed must match for the filter to
match a flow. For example, the following filter combines the TCP primitive
and the port25 primitive:

filter-definition TCPport25

match ip-protocol TCP

match ip-source-port port25

This filter passes all flows coming from TCP port 25. Any flow that does
not come from TCP port 25 will not pass through the filter.

Although primitives and conditions look similar, their names can differ.
For example, both filter conditions and filter primitives use the ip-protocol

keyword (). When matching ports, however, primitives use the ip-port key-
word (), but filter definitions use the ip-source-port and ip-destination-port

keywords instead.

NOTE The most common cause of filtering errors is using incorrect keywords. Use filter key-
words only in filters, and use primitive keywords only in primitives.

N A M I N G C O N V E N T I O N S F O R F I L T E R S A N D
P R I M I T I V E S

Assign names to your filters and primitives carefully. If you initially choose ambigu-
ous or confusing names, you’ll trip over them when you have dozens or hundreds of
filters! Make your names easy to recognize and unmistakable in purpose.

Primitives can share a name with a filter. For example, you can name a primitive
TCP and a filter TCP, but you cannot name two primitives TCP or two filters UDP. Also,
filter and primitive names are case insensitive. You cannot name one primitive tcp

and another primitive TCP.

Network Flow Analysis
(C) 2010 by Michael W. Lucas

Fi l te r ing F lows 61

Using Your Filter
Use flow-nfilter’s -F option and the filter name to pass only the traffic that
matches your filters. For example, here I’m printing only the flows that match
the TCPport25 report:

flow-cat * | flow-nfilter -F TCPport25 | flow-print | less
srcIP dstIP prot srcPort dstPort octets packets

192.0.2.37 216.82.253.163 6 25 62627 1294 12

192.0.2.36 81.30.219.92 6 25 63946 1064 15

203.16.60.9 192.0.2.36 6 25 1054 1628 31

...

In this example, you can see only the flows where the protocol is 6 (TCP)
and the source port is 25. This filter would be useful if you were investigating
mail issues, for example. The filter shows that the mail server sent traffic
from port 25, and hence the network level of the mail system is functioning.

Useful Primitives

Now that you understand how primitives and filters work together, I’ll discuss
primitives in depth. flow-nfilter supports many different primitives, but I’ll
cover only the most commonly useful ones here. The flow-nfilter man page
includes the complete primitive list, but this book contains every one that I
have used during several years of flow analysis.

Protocol, Port, and Control Bit Primitives
Filtering on network protocol and port information is one of the most com-
mon ways to strip a list of flow records down to only interesting traffic.

IP Protocol Primitives

You saw a basic IP protocol primitive earlier, but you can check for protocols
other than TCP. For example, if you use IPSec, OSPF, or other network pro-
tocols that run over IP but that are not over TCP or UDP, you’ll eventually
need to view them separately. Filtering by protocol is the only way to differen-
tiate between network applications that share port numbers, such as syslog
(UDP/514) and rsh (TCP/514).

When defining a protocol filter, you can use either the protocol number
or name from /etc/protocols. I prefer to use the number so that /etc/protocols
changes won’t interfere with traffic analysis. For example, OSPF runs over
protocol 89, so here’s a filter to match it:

filter-primitive OSPF

type ip-protocol

permit 89

Network Flow Analysis
(C) 2010 by Michael W. Lucas

62 Chapter 4

Similarly, IPSec uses two different protocols: ESP (protocol 50) and AH
(protocol 51). The following primitive matches all IPSec traffic. (Separate
multiple entries with commas.)

filter-primitive IPSec

type ip-protocol

permit 50,51

Although the IPSec protocols don’t have port numbers, flow-nfilter can
show you how much bandwidth an IPSec VPN between any two points uses
and where your VPN clients connect from.

NOTE The default filter.cfg includes primitives for TCP, UDP, and ICMP.

Port Number Primitives

Most network applications run on one or more ports. By filtering your out-
put to include the port only for the network service you’re interested in, you
ease troubleshooting. To do so, use the ip-port primitive you saw earlier.

filter-primitive port80

type ip-port

permit 80

A single primitive can include multiple ports, separated with commas
like so:

filter-primitive webPorts

type ip-port

permit 80,443

If you have a long list of ports, you can give each its own line and add
comments. This example includes services that run over TCP (telnet and
POP3) as well as UDP (SMB).

filter-primitive unwantedPorts

type ip-port

permit 23 #telnet

permit 110 #unencrypted POP3

permit 138 #Windows SMB

...

You can also create primitives for ranges of ports.

filter-primitive msSqlRpc

type ip-port

permit 1024-5000

IP port primitives can use names from /etc/services, but I recommend
using numbers to insulate you from changes or errors in that file. flow-print
and flow-report can perform number-to-name translations if necessary.

Network Flow Analysis
(C) 2010 by Michael W. Lucas

Fi l te r ing F lows 63

TCP Control Bit Primitives

Filtering by TCP control bits identifies abnormal network flows. Use the
ip-tcp-flags primitive to filter by control bits. (See “TCP Control Bits and
Flow Records” on page 50.)

filter-primitive syn-only

type ip-tcp-flags

permit 0x2

This primitive matches flows with only a SYN control bit, also known
as a SYN-only flow. Either the server never responded to the request, a fire-
wall blocked the connection request, or no server exists at the destination
address.

These flows are fairly common on the naked Internet, where viruses and
automated port scanners constantly probe every Internet address, but they
should be comparatively uncommon on your internal network. Numerous
SYN-only flows on an internal network usually indicate misconfigured soft-
ware, a virus infection, or actual intruder probes.

Similarly, you can filter on flows that contain only an RST. An RST-
only flow indicates that a connection request was received and immediately
rejected, generally because a host is requesting service on a TCP port that
isn’t open. For example, if you ask a host for a web page when that host
doesn’t run a web server, you’ll probably get a TCP RST.

filter-primitive rst-only

type ip-tcp-flags

permit 0x4

Although a certain level of this activity is normal, identifying the peak
senders of SYN-only and RST-only flows can narrow down performance prob-
lems and unnecessary network congestion.

To identify flows with multiple control bits set, add the control bits
together. For example, flows that contain only the SYN and RST control bits
indicate system problems. To identify these flows, write a filter that matches
SYN+RST packets.

filter-primitive syn-rst

type ip-tcp-flags

permit 0x6 # 0x2 (SYN) plus 0x4 (RST)

Once you start examining TCP control bits on even a small network,
you’ll find all sorts of problems and quickly ruin your blissful ignorance.

ICMP Type and Code Primitives

Different ICMP type and code messages can illuminate network activity.
Although you can filter flows based on ICMP type and code, it’s not exactly
easy to do so.

Network Flow Analysis
(C) 2010 by Michael W. Lucas

64 Chapter 4

Flows encode the ICMP type and code as the destination port. A primi-
tive that matches a particular type and code uses the ip-port primitive. ICMP
type and code are usually expressed as hexadecimal, but ip-port takes deci-
mal values. (Use Table 3-4 on page 53 to identify the appropriate decimal
values.)

For example, suppose you’re looking for hosts that send ICMP redirects.
Redirects are ICMP type 5 and come in two codes, 0 (redirect subnet) and 1
(redirect host). In hexadecimal, these would be 500 and 501. Table 3-4 shows
their decimal values as 1280 and 1281, so write a primitive like this:

filter-primitive redirects

type ip-port

permit 1280-1281

default deny

Used in a filter by itself, this primitive would pass ICMP, TCP, and UDP
flows. When you create the actual filter, use both this primitive and the ICMP
primitive to see only ICMP redirects.

IP Address and Subnet Primitives
Filtering flows by addresses and subnets lets you narrow down data to hosts
and networks of interest.

IP Addresses

Primitives for IP addresses use the ip-address type. It’s reasonable to name
primitives after the IP address they match, because IP addresses are difficult
to confuse with other types of filter primitives.

filter-primitive 192.0.2.1

type ip-address

permit 192.0.2.1

One primitive can include any number of addresses.

filter-primitive MailServers

type ip-address

permit 192.0.2.10

permit 192.0.2.11

A primitive such as this MailServers example lets you match multiple hosts
that serve a particular function, such as “all web servers,” “all file servers,” and
so on.

Subnet Primitives

Primitives can also match subnets using the ip-address-mask and ip-address-
prefix primitives. Flow-tools provides two different formats for subnets,
ip-address-mask and ip-address-prefix, to match the two common notations
for expressing subnets.

Network Flow Analysis
(C) 2010 by Michael W. Lucas

Fi l te r ing F lows 65

The ip-address-mask primitive expects a full IP network address with the
netmask in decimal form, as follows:

filter-primitive our-network

type ip-address-mask

permit 192.0.2.0 255.255.255.0

This primitive matches all hosts with an IP between 192.0.2.0 and
192.0.2.255.

The ip-address-prefix primitive uses prefix (slash) notation.

filter-primitive our-network

type ip-address-prefix

permit 192.168.0/24

permit 192.168.1/24

You can include multiple subnets, each on its own line, in the subnet
primitive, and the subnet masks or prefixes do not have to be equal in all the
entries. For example, the following is a perfectly valid primitive:

filter-primitive mixed-netmasks

type ip-address-prefix

permit 192.168.0/23

permit 192.168.2/24

This primitive matches any IP address between 192.168.0.0 and
192.168.2.255.

Time, Counter, and Double Primitives
You can filter flows by times during the day or by arbitrary counter values.

Comparison Operators in Primitives

Time and counter primitives use logical comparison operators, as shown in
Table 4-1.

Use these comparison operators only in time and counter primitives, not
in filter definitions.

Table 4-1: Time and Counter Comparison Operators

Operator Comparison Time

gt Greater than Later than

ge Greater than or equal to This time or later

lt Less than Earlier than

le Less than or equal to Earlier than or equal to

eq Equal Exactly this time

Network Flow Analysis
(C) 2010 by Michael W. Lucas

66 Chapter 4

Time Primitives

To filter according to when flows began or stopped, use a time primitive. For
example, here, you’re looking for flows that stop or start some time during
the minute of 8:03 AM.

filter-primitive 0803

type time

permit eq 08:03

NOTE Remember, flow records use a 24-hour clock, so 8:03 PM is filtered as 20:03.

You can narrow down a time period even further. For example, if you
know that the traffic you’re interested in started and stopped during the sec-
ond of 8:03:30 AM, you can write a primitive for that.

filter-primitive 0803

type time

permit eq 08:03:30

You cannot filter on millisecond time intervals. Sensors and collectors
are rarely accurate to milliseconds, however.

To define a time interval, use other comparison operators. For example,
suppose you know that something happened on your network between
7:58 AM and 8:03 AM. To filter traffic during this time period, define a time
window from 7:58 to 8:03, inclusive, with the ge and lt operators, like so:

filter-primitive crashTime

type time

permit ge 07:58

permit le 08:03

Although you can control the data you report on by selecting which flow
files to analyze, using times helps narrow your searches even further. This is
invaluable when examining large files, and it demonstrates the need for
accurate time on your network.

NOTE flow-nfilter also supports the time-date primitive for a specific date and time, such as
January 20, 2011, at 8:03 AM. If you’re interested in a specific date, however, you’re
better off analyzing the flow files for that date. Flow files are named for the year, month,
day, and time of their creation for a reason.

Counter Primitives

The counter primitive lets you create filters like “more than 100 octets” or
“between 500 and 700 packets.” When creating filters of this sort, use one
or more comparison operators with integers to define counters, as follows:

filter-primitive clipping

type counter

permit gt 10000

Network Flow Analysis
(C) 2010 by Michael W. Lucas

Fi l te r ing F lows 67

This particular filter would pass anything that has more than 10,000 of
what you’re trying to measure. As another example, suppose you want to
look at flows that last only 1,000 milliseconds (1 second) or longer. Here’s
how you could do that:

filter-primitive 1second

type counter

permit ge 1000

Or, perhaps you want only flows of 1KB or larger.

filter-primitive 1kB

type counter

permit ge 1024

You can use multiple comparisons in a counter. For example, here, I’m
permitting everything greater than 1,000 and less than 2,000:

filter-primitive average

type counter

permit gt 1000

permit lt 2000

NOTE When using the counter primitive, keep in mind that counters work only when filtering
based on octets, packets, and/or duration. Counters will not match TCP ports or IP
addresses.

Double Primitives

No, a double primitive isn’t twice as primitive as the rest of flow-tools. A double
primitive is a counter with a decimal point. It matches either packets per sec-
ond or bits per second.

For example, suppose you want to ignore all connections that send 100 or
more packets per second. You need a primitive to define the 100 part of that.

filter-primitive lessThan100

type double

permit lt 100.0

You’ll see how to tie this to the number of packets per second in a filter
definition, but this primitive defines the “less than 100” part of the filter.

Like the counter primitive, the double cannot match arbitrary data. It can
match only octets, packets, and duration.

Interface and BGP Primitives
Flow records exported from a router include routing information, but most
of this information is useful only if you’re using dynamic routing such as
Border Gateway Protocol (BGP). If you are not using BGP or other dynamic
routing protocols, you can skip this section.

Network Flow Analysis
(C) 2010 by Michael W. Lucas

68 Chapter 4

Identifying Interface Numbers Using SNMP

Most router configuration interfaces (such as Cisco’s command line) give
each router interface a human-friendly name such as FastEthernet0 or
Serial1/0. Internally, the router knows each interface by a number. The
router uses the interface number in flow records, rather than the human-
friendly name.

The simplest way to get the list of interface names and their correspond-
ing numbers is through Simple Network Management Protocol (SNMP). If
you’re using multiple Internet providers, you almost certainly have some sort
of SNMP capability. Most Unix-like systems include the net-snmp software
suite, so I’ll use that as an example. Other SNMP browsers should present
similar results.

Remember, SNMP presents information as a hierarchical tree. To get a
list of network interfaces, check the RFC1213-MIB::ifDescr branch of the SNMP
tree. To see interface names and numbers, use snmpwalk to query the router’s
RFC1213-MIB::ifDescr values. If your MIB browser doesn’t support human-
friendly names, RFC1213-MIB::ifDescr is equivalent to .1.3.6.1.2.1.2.2.1.2.

snmpwalk -v 2 -c community router RFC1213-MIB::ifDescr
RFC1213-MIB::ifDescr. 1 = STRING: "FastEthernet0/0"

RFC1213-MIB::ifDescr.2 = STRING: "FastEthernet0/1"

RFC1213-MIB::ifDescr.4 = STRING: "Null0"

RFC1213-MIB::ifDescr.5 = STRING: "T1 0/0/0"

RFC1213-MIB::ifDescr.6 = STRING: "T1 0/0/1"

RFC1213-MIB::ifDescr.7 = STRING: "Serial0/0/0:0"

RFC1213-MIB::ifDescr.8 = STRING: "Serial0/0/1:1"

RFC1213-MIB::ifDescr.9 = STRING: "Tunnel1"

In the previous example, at you query a router with SNMP version 2,
using its community name () and the router’s hostname or IP address ().
In response, you get a list of router interface names.

The SNMP index is the router’s internal number for the interface. For
example, at interface 1 is named FastEthernet0/0 (). Interface 7 is named
Serial0/0/0:0, and so on.

Network engineers should notice that of the eight interfaces listed,
interface 4 (null0) is a logical interface and should never see any traffic.
Similarly, interfaces 5 and 6 are not real interfaces; they are interface cards
supporting interfaces 7 and 8. Only five of the eight interfaces should ever
pass traffic.

By default, Cisco routers can change their interface numbering on a
reboot, which prevents gaps in interface numbering when interfaces are
added or removed. Interface numbers that change arbitrarily really confuse
long-term reporting, however. I recommend making your router maintain
consistent interface numbering across reboots. It’s true that this leaves gaps
in the interface list; note the absence of interface 3 on the example router.
On the other hand, interface 7 is always Serial 0/0/0:0, even years later. Tell
a Cisco device to leave interface numbering unchanged with the configura-
tion option snmp-server ifindex persist.

Network Flow Analysis
(C) 2010 by Michael W. Lucas

Fi l te r ing F lows 69

Also, note that if you have multiple routers exporting data to a single col-
lector, you must separate the data to get meaningful interface information.
For example, interface 8 on router A might be a local Ethernet interface,
while interface 8 on router B might be an upstream T1 interface. You can fil-
ter data by exporter IP address, but this creates the need for an extra layer of
filtering.

I’ll use the previous interface list in the upcoming examples. Interfaces 1
and 2 are local Ethernet ports, interfaces 7 and 8 are T1 circuits to two differ-
ent Internet service providers, and interface 9 is a VPN tunnel. The other
interfaces should never see traffic.

Interface Number Primitive

Filtering by interface passes only the traffic that traversed that interface. Use
the ifindex primitive for this purpose.

filter-primitive vpnInterface

type ifindex

permit 9

Interface 9 is the VPN interface. Filtering on it shows you only traffic that
goes over the VPN.

(You can list multiple interfaces on one line.)

filter-primitive localEthernet

type ifindex

permit 1,2

Filtering by interface lets you focus on how traffic flows between particu-
lar network segments.

Autonomous System Primitives

The Autonomous System (AS) is the core of BGP routing, and routers with
BGP peers include AS number information in their flow exports. You can
pull out traffic from particular AS numbers with the as primitive as follows:

filter-primitive uunet

type as

permit 701

You can list multiple AS numbers separated by commas on a single line,
or you can even list a range of AS numbers. Of course, you can also add mul-
tiple AS numbers on separate lines. (ARIN, RIPE, and other AS registrars fre-
quently issue AS numbers to large organizations in blocks, so you might need
to create such a filter.)

filter-primitive uunet

type as

permit 701-705

Network Flow Analysis
(C) 2010 by Michael W. Lucas

70 Chapter 4

You can also write filters for route announcement prefix length using
the ip-address-prefix-len primitive. I haven’t found a use for a filter that says
“Show me all the routes we’re getting that are /25 or longer,” but carriers
and transit providers might find it useful to identify clients that are trying to
announce tiny networks.1

Filter Match Statements

To assemble primitives into filters, use match statements. flow-nfilter com-
pares each flow against every match statement in a filter, and if a flow fits every
match statement, the flow passes through. If the flow does not fit every match
statement, the flow is removed from the data stream.

Many match types have names that are similar to their associated primi-
tives. For example, the ip-protocol primitive has a corresponding ip-protocol
match. Other primitives have no single matching condition. For example,
the ip-port primitive can match either the ip-source-port primitive or the
ip-destination-port primitive. If you use an incorrect match statement in your
configuration, flow-nfilter exits with an error.

Filter definitions support many different types of match condition. The
flow-nfilter manual page has the complete list, but the ones I find useful are
described here.

Protocols, Ports, and Control Bits
Matching protocols and ports is very common. Control bits and ICMP type
and code are less common but powerful in a different way.

Network Protocol Filters

Use the ip-protocol match type to check each flow against an ip-protocol
primitive.

I previously defined a primitive for OSPF. Here I’m using that primitive
to pass only OSPF traffic:

filter-definition OSPF

 match ip-protocol OSPF

Listing multiple protocol primitives in a filter will cause no packets to
match. After all, very few single flows are both TCP and UDP.

Source or Destination Port Filters

flow-nfilter has separate matches for source ports (ip-source-port) and
destination ports (ip-destination-port). These match against the ip-port

1. If you’re not a transit provider but are trying to announce tiny networks, the lesson you should
learn here is this: Tiny route announcements won’t work, and if they do, they can find you.

Network Flow Analysis
(C) 2010 by Michael W. Lucas

Fi l te r ing F lows 71

primitive. Here I’m using the port80 primitive defined earlier to filter traffic
to a web server:

filter-definition port80

match ip-destination-port port80

To match multiple ports for one service, define a primitive that includes
all the ports for that service. For example, earlier I defined a webTraffic prim-
itive for ports 80 and 443.

filter-definition webTraffic

match ip-destination-port webTraffic

Use the ip-source-port similarly. For example, to capture traffic leaving
your web server, filter the flows leaving ports 80 and 443. (You’ll see how to
write reports that match both arriving and departing traffic in “Logical Oper-
ators in Filter Definitions” on page 76.)

filter-definition webTraffic

match ip-source-port webTraffic

TCP Control Bit Filters

Use the ip-tcp-flags keyword to match TCP control bit primitives. For
example, I previously defined a rst-only primitive that matched flows that
contained TCP resets only.

filter-definition resets

match ip-tcp-flags rst-only

This filter displays only the flows that match the rst-only primitive. You
don’t need to specify a protocol, because flow records contain control bits
only for TCP flows. You could use very similar filters for the other TCP con-
trol bit primitives.

ICMP Type and Code Filters

Remember that flows record the ICMP type and code in the destination port
field of ICMP flows. However, unlike TCP control bits, which appear only in
the records of TCP flows, destination ports appear in TCP, UDP, and ICMP
flows. To specifically match ICMP type and code, your filter must include the
destination port and the protocol as follows:

filter-definition redirects

match ip-destination-port redirects
match ip-protocol ICMP

I previously defined a redirects primitive at that matched both codes
within the ICMP redirect type. Here, I’m adding a match () for the ICMP
protocol primitive as well. This filter passes only the flows that contain ICMP
redirects.

Network Flow Analysis
(C) 2010 by Michael W. Lucas

72 Chapter 4

Addresses and Subnets
flow-nfilter supports two match types for IP addresses: source (ip-source-
address) or destination address (ip-destination-address). These match types
can work on any of the three IP address primitives: ip-address, ip-address-
mask, or ip-address-prefix.

You can match the source address on one line and the destination address
on another line. For example, suppose you have an ip-address-prefix primi-
tive for your client’s network and another for your web servers. The following
definition passes traffic from your client to your web server:

filter-definition clientsToWeb

match ip-destination-address webServers

match ip-source-address clientNetwork

You cannot list multiple matches of the same type in a single filter
because a single flow cannot have multiple source or destination addresses!
To pass traffic from several source or destination addresses, use a primitive
that contains all the desired addresses.

The next filter captures data coming into the server from web clients.
You need a corresponding report to catch traffic from your web servers to
the client network (or a slightly more complicated filter to capture traffic
moving in both directions, as you’ll see in “Logical Operators in Filter Defini-
tions” on page 76). Because you want to see only web traffic, you also filter
with primitives for web traffic and TCP.

filter-definition clientsToWebHttpTraffic

match ip-port webTraffic

match ip-protocol TCP

match ip-destination-address webServers

match ip-source-address clientNetwork

You’ll see other ways to achieve this same effect in “Using Multiple Fil-
ters” on page 75.

Filtering by Sensor or Exporter
Multiple flow sensors can export to a single collector, but at times you’ll
want to see only the flows that came from a particular sensor. You can use the
ip-exporter-address match with any IP address primitive to create a filter that
passes flows from a particular sensor, as follows:

filter-primitive router1

type ip-address

permit 192.0.2.1

filter-definition router1-exports

match ip-exporter-address router1

This particular filter passes only the flows exported from the router at
192.0.2.1.

Network Flow Analysis
(C) 2010 by Michael W. Lucas

Fi l te r ing F lows 73

Time Filters
The start-time and end-time match types let you filter on when flows begin
and end, using the time primitive. For example, the following sample cap-
tures all flows that take place entirely within a particular minute, using the
0803 time primitive defined earlier:

filter-definition 0803

match start-time 0803

match end-time 0803

You can define a filter to match flows starting or ending at any time that
you can express with a primitive.

In most cases, you won’t have accurate time information about prob-
lems. Human beings have a notoriously fuzzy time sense: “A few minutes ago”
might be anything from 30 seconds to an hour, and after a few days even that
is unreliable. Remember that each flow file covers a five-minute period. Most
of the time you’re better off searching entire flow files for issues rather than
trying to filter on times. I find that filtering on times is useful only on very
large flow files and then only when you have precise timing information from
the flow files themselves. A human saying that the website broke at 8:15 AM is
not reliable. If your flow records say that you had unusual traffic at 8:15 AM,
however, you might want to see what else happened during that minute. Fil-
tering on times can be useful in that instance.

Clipping Levels
A clipping level is the point at which you start ignoring data. For example, you
might not care about flows that contain tiny amounts of data, or perhaps you
want to see only tiny flows. To clip data, you can set clipping levels on the
amount of traffic transmitted, the connection speed, and the duration of
connections.

Octets, Packets, and Duration Filters

Use counter primitives to filter based on the number of octets per flow, the
packets per flow, or the duration of flows. For example, earlier I defined a
primitive for 1KB or larger. Let’s use that primitive now to remove the tiny
connections from the flow data.

filter-definition 1kBplus

match octets 1kB

Similarly, you created a primitive for anything that totaled 1,000 or
more, called 1second. You can write a filter that uses this primitive to allow
only flows of 1,000 milliseconds (1 second) or longer.

filter-definition over1second

match duration 1second

Network Flow Analysis
(C) 2010 by Michael W. Lucas

74 Chapter 4

Counters are arbitrary numbers and can apply to octets, packets, or dura-
tion. For example, if you want a filter that includes only flows with 1,024 or
more packets, you could easily reuse the 1kB primitive for that.

filter-definition 1024plusPackets

match packets 1kB

Even though you can, I try not to reuse primitives in this way. You never
hear of a kilobyte of packets! Such filters confuse me. Being confused while
trying to identify network problems is not good.2

Packets or Bits per Second Filters

Perhaps you’re interested in how quickly connections move or you’re inter-
ested only in the really fast or really slow connections. If so, you can use dou-
ble primitives to filter based on packets per second or bits per second.

For example, earlier you defined a double primitive for less than 100. You
can use this for either packets per second or bits per second.

filter-definition lessThan100pps

match pps lessThan100

filter-definition lessThan100bps

match bps lessThan100

In this particular case, I don’t mind reusing the lessThan100 primitive,
because the name isn’t so closely tied to a particular data type.

BGP and Routing Filters
You can filter flows based on the routing information included in the flow
records. (If you are not using BGP, you can skip this section.)

Autonomous System Number Filters

The source-as and destination-as match types let you match based on AS
numbers. For example, this filter lets you see what traffic you’re receiving
(from what was the UUnet network) using the uunet AS primitive defined
earlier:

filter-definition uunet

match source-as uunet

You could also turn this around to create a filter to permit the traffic
you’re sending to UUnet systems.

2. I don’t need to waste my time calling myself an idiot because I gave a filter an ambiguous
name. Many other people are delighted to call me an idiot for all sorts of reasons.

Network Flow Analysis
(C) 2010 by Michael W. Lucas

Fi l te r ing F lows 75

Next-Hop Address Filters

The next hop is the IP address where a router sends a flow. This is usually the
IP address on the remote end of an ISP circuit (for outgoing flows) or the
external address of your firewall (for inbound flows). Routers include the
next hop in flow records. However, software flow sensors like softflowd know
nothing of interfaces on remote hosts or how packets are routed, so flows
exported from software flow sensors do not contain next-hop addresses.

Now suppose that the next-hop IP address for one of your Internet pro-
viders is 61.118.12.45. To filter all traffic leaving your network via that ISP,
you could use a primitive and a definition like this:

filter-primitive ispA

type ip-address

permit 61.118.12.45

filter-definition ispA

match ip-nexthop-address ispA

The ip-nexthop-address match type works with the primitives ip-address,
ip-address-mask, and ip-address-prefix.

Interface Filters

Another way to filter by provider or network segment is to filter by the router
interface. The match types input-interface and output-interface let you filter
by traffic arriving or leaving your router.

You defined a primitive for router interface 9 earlier. Here I’m using it
in a filter:

filter-definition vpn

match input-interface vpnInterface

This shows traffic entering the router on this interface.

Using Multiple Filters

Suppose you want to identify all traffic between two machines. You could
define primitives for those two hosts and then write a filter that specifically
defines those hosts. However, this common situation will keep you very busy
writing new filters. Instead, I find it much easier to define smaller filters and
tie them together on the command line.

You can invoke flow-nfilter repeatedly in a single command. Find the
flow files for the times you’re interested in, filter them for the first host, and
then filter them a second time for the second host.

flow-cat ft-* | flow-nfilter -F host1 | flow-nfilter -F host2 | flow-print | less

Network Flow Analysis
(C) 2010 by Michael W. Lucas

76 Chapter 4

The first flow-nfilter invocation at passes only flows that include traf-
fic from host1. The second at passes only flows that include traffic from
host2.

Similarly, you can write separate filters for certain protocols, like all web
traffic. You previously created a filter for all HTTP and HTTPS traffic, called
webTraffic.

flow-cat ft-* | flow-nfilter -F host1 | flow-nfilter -F webTraffic | flow-print | less

The first filter at passes only traffic for the interesting host, and the
second () passes only HTTP and HTTPS traffic.

You can create simple filters for important hosts and subnets on your
network. For example, if you have a customer who reports problems reach-
ing your website, you could write one flow filter for your site and one for the
customer’s addresses and use them both to see what traffic passed between
your networks. You could then look for SYN-only or RST-only flows that
would indicate problems. Or you might find that traffic from the customer’s
network never reaches you at all. In any case, these two filters will tell you
exactly what traffic appeared on your network and how it behaved.

By combining filters on the command line, you will write fewer filters
and get more use out of the filters you create.

Logical Operators in Filter Definitions

When you put multiple match conditions in a filter definition, flow-nfilter
places a logical “and” between them. For example, the following filter shows
all traffic that runs over TCP and has a source port of 25. This passes an
email server’s responses to a connection.

filter-definition TCPport25

match ip-protocol TCP

match ip-source-port port25

You can use other logical operators to build very complicated filters.

Logical “or”
When I try to analyze a connection problem, I usually want to see both sides
of the conversation. I want a filter that will show connections to port 25 as
well as from port 25. For this, use the or operator as follows:

filter-definition email

match ip-protocol TCP

match ip-source-port port25

or

match ip-protocol TCP

match ip-destination-port port25

Network Flow Analysis
(C) 2010 by Michael W. Lucas

Fi l te r ing F lows 77

After the or statement at , a whole new filter definition begins. Although
I listed TCP in the first filter, if you’re interested in TCP in the second filter,
you must repeat the match on TCP at , after which you can add the new
match statement at to catch flows that end on port 25. Now, if you apply this
filter to your flow data, you’ll see something like this:

flow-cat ft-v05.2011-12-20.12* | flow-nfilter -F email | flow-print | less
srcIP dstIP prot srcPort dstPort octets packets

217.199.0.33 192.0.2.37 6 5673 25 192726 298

192.0.2.37 217.199.0.33 6 25 5673 8558 181

206.165.246.249 192.0.2.37 6 38904 25 13283 22

192.0.2.37 206.165.246.249 6 25 38904 1484 16

...

The first flow at is from a remote IP to the address of the local email
server, with a destination port of 25. This is an incoming mail transmission.
The second flow at is from the mail server to the same remote IP address;
it’s coming from port 25. This is the response to the first flow.

I could use more sophisticated flow-print formats to view this in more
detail, run flow-report on this data to check for errors, or add another filter
to specifically point out TCP errors in the email stream. This simple check
shows me that the mail server is exchanging substantial amounts of traffic
on TCP port 25, however. I would tell my mail administrator to check the
logs for errors or provide more information.

Filter Inversion
Sometimes it’s easier to write a filter for the traffic you’re not interested in.
For example, suppose you want to see all the traffic to or from your email
servers that isn’t email. Although you could write primitives that included all
port numbers except those for email, that’s annoying and tedious.

Instead, use the invert keyword to reverse the meaning of a filter, like so:

filter-definition not-email

invert

match ip-protocol TCP

match ip-source-port port25

or

match ip-protocol TCP

match ip-destination-port port25

By adding invert to the report at , you pass everything that doesn’t
match the defined filters. In this example, I’m passing every network transac-
tion that doesn’t involve TCP port 25.

But there’s a problem with this filter: It will match all nonemail traffic on
all the hosts for which you’re capturing data. You, however, need to view only
traffic for your email hosts.

Network Flow Analysis
(C) 2010 by Michael W. Lucas

78 Chapter 4

To solve this problem, you could add your email servers into the not-email
filter, but the email servers both send and receive email. You would need a
definition section for remote servers connecting to your mail servers, a sec-
tion for your servers’ response to those remote servers, a third section for
your mail servers connecting to remote mail servers, and a fourth for the
remote servers’ responses to your servers’ requests. That’s pretty ugly.

It’s much simpler to define a separate filter that strips the flow data down
to just the email servers and then to concatenate the two, as follows:

filter-primitive emailServers

type ip-address

permit 192.0.2.37

permit 192.0.2.36

filter-definition emailServers

match ip-source-address emailServers

or

match ip-destination-address emailServers

The emailServers primitive at includes the IP addresses of all the mail
servers. Next, at I create a filter definition to match all traffic leaving or
going to those servers. Then, to see all nonemail traffic to or from my email
servers, I do this:

flow-cat * | flow-nfilter -F emailServers | flow-nfilter -F not-email | flow-print | less

The emailServers filter at passes only the flows that involve my email
servers. The not-email filter at passes only flows that are not SMTP. By com-
bining these two filters, I see only interesting traffic. I’ll probably need to
adjust the filter further to remove other uninteresting traffic, such as DNS
queries to the DNS server, but I’m almost there.

Of course, after reviewing the filtered traffic, I can go ask my email
administrator why he’s running his own DNS server on the mail server
instead of using the corporate name servers and why he browses the Web
from those machines instead of using the proxy server and its adult content
filters.3

Filters and Variables

Flow-tools also includes filters that can be configured on the command line,
which can be useful for very simple filters, such as identifying traffic from a par-
ticular IP address. The default filters that use these are fairly limited, but they’ll
suffice for simple traffic analysis. It’s also easy to write your own variable-driven
reports.

3. Yes, I could take this straight to human resources, but HR won’t wash and wax my car.

Network Flow Analysis
(C) 2010 by Michael W. Lucas

F i l te ring F lows 79

Using Variable-Driven Filters
The filters that are configurable on the command line use three variables:
ADDR (address), PORT (port), and PROT (protocol). These support five reports,
letting you filter by protocol as well as by source and destination address and
port: ip-src-addr, ip-dst-addr, ip-src-port, ip-dest-port, and ip-prot.

Suppose your boss calls. She’s connecting from a random open wireless
hotspot in some inconvenient city and can’t get into the corporate VPN con-
centrator. You get her IP address, either by asking her for it or by accessing
system logs to see where she’s coming from. To see all the traffic coming to
your network from her IP, without writing a custom filter, you could use a
command-line variable on the flow files for that time window. For example, if
she’s at the IP address 192.0.2.8, you’d use a command like this:

flow-cat * | flow-nfilter -F ip-src-addr -v ADDR=192.0.2.8 | flow-print

The -v argument at tells flow-nfilter that you’re assigning a value to a
variable. In this example, I’ve assigned the value 192.0.2.8 to the variable
ADDR. You’ll see all traffic originating from that IP address.

Defining Your Own Variable-Driven Filters
Variable-driven filters take advantage of the primitives VAR_ADDR (address),
VAR_PORT (port), and VAR_PROT (protocol), as defined in filter.cfg. For example,
the following is a default variable-driven filter that uses the ADDR variable. This
looks exactly like a standard report, except that it uses the variable name
instead of a primitive.

filter-definition ip-src-addr

match ip-source-address VAR_ADDR

Use these variables to define your own variable-driven filters. For example,
I like to see all traffic to and from a host of interest. Writing a command-line
version of this report is easy.

filter-definition ip-addr

match ip-destination-address VAR_ADDR

or

match ip-source-address VAR_ADDR

Similarly, I prefer to see all traffic to and from a port simultaneously.

W H E N T O U S E V A R I A B L E - D R I V E N F I L T E R S ?

For simple filters on individual hosts and ports, use variable-driven filters. If you must
filter on multiple hosts or ranges of ports, define primitives and filters in filter.cfg.

Network Flow Analysis
(C) 2010 by Michael W. Lucas

80 Chapter 4

filter-definition ip-port

match ip-destination-address VAR_PORT

or

match ip-source-address VAR_PORT

With these reports, I can dynamically filter for any individual host or port
on the fly.

Creating Your Own Variables
VAR_ADDR, VAR_PORT, and VAR_PROT are not magic variables hard-coded into
flow-nfilter; they’re defined in filter.cfg. Here’s the definition of VAR_PORT:

filter-primitive VAR_PORT

type ip-port

permit @{PORT:-0}

Most of this primitive looks like any other primitive for a port number,
but the permit statement () is very different. This example takes the vari-
able PORT as defined on the command line and turns it into a number. The
specifics of how this works aren’t important, but you can use this sample as a
model for your own primitives.

Now here’s another example. I frequently work with BGP, so I need an
AS number primitive.

 filter-primitive VAR_AS

 type as

 permit @{AS:-0}

I’ve assigned this primitive the name VAR_AS at to correspond with the
existing variable names, and I’ve assigned it the as type (). The permit state-
ment at is copied from the VAR_PORT primitive, substituting the variable
name AS for the port. Now I can create a filter using this variable.

filter-definition AS

 match source-as VAR_AS

or

 match destination-as VAR_AS

This closely resembles the earlier custom variable–based filters in that
you pass traffic going to and from the specified AS (). Now you can use
this filter to get the traffic to a particular autonomous system.

flow-cat * | flow-nfilter -F as-traffic -v AS=701 | flow-print -f 4 | less

When you apply this filter, you’ll see only the flows involving AS
number 701.

At this point, you should be able to filter traffic in any way you like. Now
let’s run analysis on that data.

Network Flow Analysis
(C) 2010 by Michael W. Lucas

